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REVIEW ARTICLE 

The present status of the density-functional theory of the 
liquid-solid transition 

Marc Baust 
Facultt des Sciences:, CP 231, Universitt Libre de Bruxelles, Boulevard du Triomphe, 
B-1050 Brussels, Belgium 

Received 19 September 1989 

Abstract. Recent attempts at a microscopic description of the liquid-solid transition, within 
the density-functional theory of non-uniform fluids, are put into a critical perspective by 
comparing the different methods proposed and the results obtained for the freezing of hard- 
core systems. 

1. Introduction 

Notwithstanding the fact that, during the past decade, the density-functional (DF) theory 
has demonstrated its ability to predict bulk-phase coexistence properties or phase 
diagrams of a variety of systems with considerable success, it is fair to state from the 
outset that there still does not exist, as yet, a general first-principles theory of first-order 
phase transitions. This may not be very surprising since, after all, the phase transition 
problem is, without doubt, the most difficult problem of equilibrium statistical mechanics 
(not to mention the unavoidable non-equilibrium aspects of the nucleation kinetics). In 
the particular case of the liquid-solid transition (to which we limit our discussion), the 
DF theory has gained wide recognition and it may therefore be useful to put into 
perspective those items of the DF theory that still prevent us from bridging the gap 
separating it from a fully first-principles theory. This is what will be attempted here (for 
earlier discussions of the DF theory of freezing, see Haymet (1987) and Baus (1987)). 

The basic idea behind the DF theory of freezing is that good thermodynamic properties 
of the solid can be obtained by using only the structural properties of the liquid as input. 
Since the advent of modern liquid-state theory (see e.g. Hansen and McDonald 1976), 
the structural properties of liquids are fairly well known, and this then has paved the 
way to accurate determinations of the free energies of the coexisting liquid and solid 
phases within one and the same DF theory. Knowledge of the free energies constitutes 
indeed the basic prerequisite for solving the coexistence aspect (to which we restrict our 
discussion) of the phase transition problem. Many earlier attempts at a molecular 
description of phase transitions have already played with the same basic idea, but poor 
results have generally been obtained because of the use of poor liquid-state data within 
a more complex theoretical framework such as the Yvon-Born-Green hierarchy or the 
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partition function approach (see Baus (1983) for some of the historical background 
references). The DF theory can bypass most of the difficulties of these more traditional 
approaches because it directly expresses the thermodynamic potentials of any system 
(say, liquid or solid) in terms only of its one-body density p ( r ) ,  which exhibits all of the 
system’s observable symmetries, and of its two-body direct correlation function (DCF) 
c(r, r’;  [ p ] ) ,  which plays the role of an effective pair potential self-consistently deter- 
mined by p( r )  through its functional dependence (indicated here by the square brackets) 
on the latter. All the underlying details concerning the Hamiltonian (such as pair or 
multiparticle interactions, form of the potential, etc) or the higher-order correlation 
functions, which usually form the stumbling block of earlier approaches (see e.g. Baus 
1984b), remain implicit here. It is thus not surprising that the approximations to DF 
expressions for the thermodynamic potentials are also easier to keep under control. All 
present-day limitations of the DF theory of freezing result therefore solely from the 
absence of a systematic procedure to introduce its basic assumption, enunciated at the 
beginning of this paragraph, into the exact DF expressions. 

The remainder of this paper will be organised as follows. We first critically review 
the different DF routes to freezing (section 2), then we consider the results obtained for 
anumber of specific (mostly hard-core) systems (section3) and, finally, conclude (section 
4) with some general remarks. 

2. Methods 

The liquid-solid or freezing transition can be considered as the prototype of a first-order 
phase transition (for background information on freezing see Stishov (1975) and Frenkel 
and McTague (1980)). The modern theory of freezing is usually traced back to the 
pioneering work of Ramakrishnan and Yussouff (1979), although several precursors 
can be clearly designated (for a discussion of this point see e.g. Baus (1983)). Their 
paper does not use the DF theory as such, but it can be easily reformulated within the 
general DF theory of non-uniform fluids (Yang et a1 1976), as was shown by Haymet and 
Oxtoby (1981). The DF theory by itself is merely a reformulation of equilibrium statistical 
mechanics within the direct correlation function language and, hence, is not restricted 
to freezing. It has already been used to study both uniform and non-uniform fluids, in 
particular fluid interfaces (see Evans 1979, 1989) and also a variety of other phase 
coexistence problems (see Haymet 1987). It can also be used to formulate (but not 
necessarily solve) some of the more fundamental problems of the statistical mechanics 
of phase transitions in general (see e.g. Baus 1984b, 1987). In the particular context of 
freezing, the DF theory provides us with a convenient framework in which all the modern 
theories can be easily reformulated. In retrospect, the most important role of the paper 
by Ramakrishnan and Yussouff (1979) may well have been to draw the attention of the 
liquid physics community to the fact that, with the information presently available, a 
liquid-state-based theory is able to produce good thermodynamic data for the solid. 
phase. This observation has provoked an avalanche of theories, which we will now try 
to put into a physical perspective. 

2.1 .  Thermodynamic perturbation expansion 

In the original RY (Ramakrishnan and Yussouff 1979) theory, the density of the solid, 
p s ( r ) ,  is computed as the response of a uniform liquid of density pL to the introduction 
of a density change A p ( r )  = ps(r)  - pL as (@ = l/kBT) 

PS(d  = PL exP[-S4r>l ( la)  
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where the DCF of the liquid cL(/rI; pL), plays the role of the linear response function of 
the mean-field potential u(r) with respect to the local density change A p ( r ) .  Owing to 
the highly non-linear character of equation (la),  it may happen, even at linear response 
order for equation ( lb) ,  that periodic solutions with a prescribed crystalline symmetry, 
viz. 

appear suddenly, above some bifurcation point, even when the external field ~ ( r )  is put 
equal to zero. (In equation ( 2 ) ,  the summation is over all reciprocal-lattice vectors (RLV) 
k . )  This bifurcation point was later extensively studied by Bagchi et a1 (1983), who 
assimilated it to the phase transition point, which is misleading for a first-order phase 
transition since this point defines only the metastable solid. In the RY theory the phase 
coexistence was located by equating the grand potentials of the solid, Q[ps] ,  and the 
liquid, S2(pL), which was again computed perturbatively as 

where AQ = S2[ps] - Q(pL), Vis the volume and ck are the RLV Fourier components of 
cL(lr\; pL). In equation (3a) the liquid was considered to be incompressible, whereas 
equation (1) was assumed to realise the extremum of Q[ps ] ,  which in turn implies that 
the liquid and the solid have the same chemical potential. The physical interpretation 
given to equation (1) is that the solid can be viewed as a non-uniform perturbation of 
the liquid, this non-uniformity being described by equation (2) in terms of ‘density 
waves’, while equation (3a) is used to estimate the cost in free energy for setting up 
such density waves until, at coexistence, it can support such waves self-consistently 
(AQ = 0). In practice, equation (1) is solved numerically for { p k }  for given pL, c k  and 
ps = p k = O  (the average density of the solid). The result is substituted into equation (3) 
until AS2 = 0 is realised, which then determines a first relation between pL and ps. A 
second relation is obtained by equating the amplitude ck, fork equal to the smallest RLV, 
to the maximum with respect to k of the function cp(pL), taken from liquid-state theory 
or directly from experiment. In practice, only the density wave corresponding to this 
smallest RLV was retained in the Fourier series of equations (2) and (3). Occasionally, a 
second density wave with a RLV close to the secondary maximum of ck(pL) was also 
retained. The good results obtained from this one- or two-density-wave theory did 
surprise many. Indeed, the thermodynamic perturbation expansion of the solid around 
the liquid in equation (3a) (not to speak of equation (lb)) is difficult to justify, as is the 
replacement of the infinite Fourier series in equation (3a) by just one or two of its 
dominant terms. To make things worse, it recently became clear (Lovett 1988) that 
equation (1) is unstable with respect to small changes in the approximation used for 
cL(r; pL). The RY results can thus be understoodonly if strong compensations are present 
in, or between, the perturbation expansion and the Fourier expansion, with the RY 
theory corresponding to some kind of optimal choice of terms. The need for more 
systematic investigations was clearly felt and these were soon to come. 
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Equations (1)-(3) were first rederived within the more rigorously based DF theory of 
non-uniform fluids by Haymet and Oxtoby (1981) (with minor changes in equation (3a) 
related to the finite compressibility of the liquid): 

- t 1 d r  1 dr’ cL(Ir - r‘l; p l )Ap(r )Ap(r ‘ )  + . . . (3b) 

where A n / ,  indicates that AR is computed at fixed chemical potential p. The problems 
related to the Fourier series were considered next by Haymet (1983), who systematically 
retained all the terms of the Fourier expansion up to the first 15 shells of RLV (each 
‘shell’ containing all the RLV of the same length) or ‘density waves’ (each density wave 
corresponding to the terms of equation (2) belonging to a given shell of RLV). This 
corresponds to describing the phase transition in terms of 15 independent order par- 
ameters {pk} (one for each density wave). Later, Igl6i and Hafner (1986) showed that 
the slow convergence of the Fourier series (up to 40 shells were retained here) leads to 
an oscillatory behaviour of the results, with the possibility for the transition to disappear 
and reappear. These oscillations only disappear when at least 60 shells are retained 
(Barrat eta1 1987~).  Such a large amount of order parameters could be considered in the 
last two works only by assuming some relation between them, viz. 

P k  = exp( -k2/4a) (4) 
which corresponds to an isotropic Gaussian density profile for the solid. The results of 
RY (based on retaining only the first and fourth shells corresponding to the first two 
maxima of the liquid structure factor) and of Haymet (1983) (based on all the first 15 
shells) correspond in some sense to an ‘optimum’ choice for which the results obtained 
are comparable to those corresponding to the fully converged series. It is not clear yet 
whether in the case of the RY choice the resulting ‘optimisation’ could have some 
symmetry-related explanation. In any case, the lesson drawn from these results by most 
authors is that, because of their slow convergence, the use of Fourier series should be 
avoided. It is relatively easy to bypass this technical problem by using the density profiles 
of equation (4) in real space, viz. 

where the {R} now denote the Bravais lattice vectors. This allows the solid to be described 
by a single order parameter a ,  the inverse width of the Gaussian density peaks in 
equation (5). As seen from equation (4), all the RLV order parameters are then ‘slaved’ 
one to another. The approximation embodied in equation (5) is quite realistic in practice, 
at least for cubic lattices (see e.g. Young and Alder 1974). Systematic improvements 
over equation (5) can be introduced, at the expense of adding more order parameters, 
but these have usually only a marginal effect on the results (see Colot et a1 1986). 
Equation ( 5 )  also has the advantage of guaranteeing a priori the positive character of 
p(r), a property that is always lost when equation (2) is used with a finite number of RLv. 
The slow convergence of the Fourier series (2) can also be easily understood from 
equation (5) since for the well localised particles of the stable solid the a-values in 
equation (5) have to be large, whereasequation (4) tellsus then that the order parameters 
pk will become negligible only for correspondingly large k-values. For all these reasons 
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most authors have now switched from the Fourier representation (2) to the Gaussian 
approximation ( 5 ) ,  although this took some time. 

A less technical problem is concerned with the thermodynamic perturbation expan- 
sion at the basis of equation (3). The RY theory corresponds to an expansion of the 
thermodynamic properties of the solid around those of the coexisting liquid, with the 
expansion being truncated at second order. Because of the lack of a smallness parameter, 
it is difficult to assess apriori the nature of this expansion, except by explicit calculation 
of the higher-order terms. This, however, would involve DCF of higher order, which are 
unknown. Several authors (Ramakrishnan and Yussouff 1979, Haymet 1983) have 
observed that part of the third-order contributions omitted in equation (3) can in fact 
be obtained from the density derivative of cL(r;pL), which is known. Adding this 
contribution to the second-order theory seems to improve the results (Haymet 1983). 
However, when more of the third-order terms are included (these can only be calculated 
approximately; see Barrat et a1 (1987b), Curtin and Ashcroft (1987) and Denton and 
Ashcroft (1989a)), the results worsen (Curtin 1988), again indicating some sort of 
oscillatory convergence of the expansion, with the second-order RY theory cor- 
responding to some optimum choice of terms. Things get even worse when one slightly 
changes the liquid around which the properties of the solid are expanded. Indeed, if one 
starts the thermodynamic perturbation expansion around the liquid with a density equal 
to that of the solid (i.e. typically 10% above the density of the coexisting liquid), then 
no transition can be obtained from the second-order theory (Baus and Colot 1985) nor 
from the third-order theory (Curtin 1988). Because of the instability of the results, one 
has now clearly also to question the convergence of this expansion a posteriori. It 
thus remains somewhat puzzling why the RY theory should correspond to an optimum 
selection of terms in a poorly converging series. It would clearly be more comfortable 
to consider non-perturbative approaches to freezing. Before we consider these, let us 
also mention a few variants of the RY theory. Jones and Mohanty (1985) have considered 
the second-order theory (equation (36)) together with the Gaussian approximation ( 5 ) ,  
with E determined variationally instead of solving the Euler-Lagrange equation (1). 
These authors have used equation ( 5 )  with A ,  which gives the ratio of the number of 
particles N to the number of lattice sites N,, A = N/N,,  considered as an additional 
variational parameter. When A < 1, equation (5) may be considered as describing a 
solid with vacancies (whereas forA > 1 the solid described by equation ( 5 )  is presumably 
unphysical). In this way they found a solid with more than 10% vacancies, which is very 
unphysical and two orders of magnitude above the generally accepted value. This very 
loose solid was then found (Jones 1987) also to have unusual elastic properties. It should 
be observed, however, that the free energy considered here (see equation (36)) does 
not contain any of the mechanisms associated with vacancy formation, since this would 
require an explicit consideration of the solid surface. It does not seem to make sense 
therzfore to use equation ( 5 )  withA # 1 in conjunction with equation (3b). Most authors 
have therefore considered only the perfect crystal ( A  = 1). In an alternative approach, 
Igl6i and Hafner (1986) have performed the second-order perturbation expansion (36) 
of the solid around a reference liquid (different from the coexisting liquid) and minimised 
the corresponding equation (36) with respect to the density of this reference liquid. This 
is a simplified version of an idea put forward by Meister and Kroll(l985) to expand the 
solid density around a smooth but non-uniform reference density (see also Groot 1987). 
For freezing, such theories quickly tend to become fairly complicated, but they could 
be better suited for treating non-uniform fluids by perturbation theory. In any case, for 
freezing, these theories cannot bypass the intrinsic problems of the thermodynamic 
perturbation expansion at the very basis of the RY theory. 
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2.2 .  Weighted-density approximation 

In view of the fundamental difficulties with the perturbation approach, a new non- 
perturbative line of research was initiated by Tarazona (1984) and later extended by 
Curtin and Ashcroft (1985) under the name of the weighted-density approximation 
(WDA). It is based on a refined version of the so-called local-density approximation, 
whereby a thermodynamic property of a non-uniform phase (here the solid) is approxi- 
mated by evaluating the thermodynamic property of the uniform phase (here the liquid) 
at a density equal to the local density of the non-uniform phase. In the present case, this 
would imply the use of liquid-phase data extrapolated to such high density (for the peak 
values of ps(r)) that the liquid becomes ill-defined even as a metastable phase. In the 
WDA this difficulty is bypassed by first weighting the density of the solid, and it is the 
liquid-phase data evaluated at this weighted density that are used to describe the solid. 
This theory is usually formulated in terms of the canonical or Helmholtz free energy 
F[psl: 

Here the ideal-gas term 

and the contribution from the external field q( r )  

are known exactly, as functionals of the density of the solid ps(r), whereas the excess 
term Fex[ps] originating from the particle interactions has to be approximated. In the 
WDA this contribution is written as 

where VL(p) is the excess free energy per particle of a uniform liquid of density p ,  while 
p(r) in equation (9) is the ‘weighted’ solid density 

p(r) = dr’ ps(r’)w(r - r’; p(r)) 1 
with w(r; p )  being the weighting function. The difficulty now lies in the appropriate 
physical definition of w(r; p )  and the technical problem of solving equation (lo), which 
is an implicit equation for p(r) .  It is at this stage that appeal is made to the DF theory. 
The exact DF relation between the DCF of the solid and its excess free energy 

is used to determine w(r; p).  This is done by requiring that, in the limit of a uniform 
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liquid, ps(r)  + p: (i) equations (6)-(10) restore the free energy of the liquid, which 
implies that w(r; p)  be normalised for any p 

dr  w(r;  p)  = 1 I 
and (ii) equation (11) restores the DCFOf the liquid, cL(Ir - r'l; p)  

This problem was first solved by Tarazona (1984,1985) using the additional assumption 
that w(r;  p) ,  and hence cL(/rI; p), can be expanded in a virial series as 

w(r; p)  = WO@) + w1(r)p + w,(r)p2 + . . . 
c&; p)  = CO@) + c1(r)p + c2(r)p2 + . . . 

(14a) 

(146) 

which was truncated, first at zeroth order (Tarazona 1984) and later at second order 
(Tarazona 1985). Although good results were obtained in this manner, this poses the 
question of the convergence of the freezing results with respect to the truncation of the 
virial expansion (14), a problem somewhat similar to that of the perturbation expansion 
in the RY theory. To bypass this difficulty, Curtin and Ashcroft (1985) considered directly 
the non-linear differential equation for w(k;  p) ,  the spatial Fourier transform of w(r; p) ,  
which follows from (13): 

a 
- P - ' C L ( k  P I  = 2Wt(p)w(k; PI  + P - { W t ( P ) [ w ( k ;  (15) 

aP 

where W [ ( p )  = aW,(p)/ap. This approach yields good results but is quite elaborate 
because one has to: (i) solve equation (15) numerically for w(k;  p) ;  (ii) compute w(r;  p)  
and solve equation (10) for p ( r ) ;  (iii) perform the volume integral in equation (9); and 
(iv) finally, minimise the total F [ p s ]  with respect to any variational parameters appearing 
in ps ( r )  (see e.g equation ( 5 ) ) .  In view of this, a modified WDA (or MWDA) has recently 
been proposed by Denton and Ashcroft (1989b), for which most of the technical dif- 
ficulties of the WDA can be avoided. It amounts to replacing equations (9) and (10) by 

(16) MWDA (1lPSV)Fex [PSI = V L ( P )  

where P is now a uniform weighted density defined in terms of a new weighting function 
q r ;  p)  

J d r  J dr '  p(r)p(r ' )@(r - r'; P )  
J dr"  p(r")  

p =  

which replaces equation (10). The requirement (13) now no longer leads to equation 
(15) but to the much simpler linear equation 

which is readily solved. The results obtained from this MWDA compare well with those 
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of the much more involved WDA. Equation (17) is physically less obvious than the original 
equation (10). The idea behind equation (17) goes back to the theory of Stoessel(l988) 
in which equation (16) was used with p determined in such a manner that the liquid of 
density p will have the same second virial coefficient as the solid; this then leads to 
equation (17) with m(r; p )  replaced by @"(r) ,  its lowest-order contribution in a virial 
expansion similar to equation (14a). Whereas the full "it(r; p)  leads to good results, the 
theory of Stoessel(1988), based only on Go(r ) ,  leads to no liquid-solid phase transition 
(the free-energy curves do not cross). This clearly shows that virial expansions such as 
those of equation (14) have to be handled with care in the freezing context, which always 
involves fairly dense phases for which equation (14) is not applicable. 

2.3. Effective-liquid approximation 

A third line of approach was developed by Baus and Colot (1985). It was based on the 
desire to use the DF theory in a non-perturbative fashion. This can be achieved by starting 
from the exact equations (6)-(8) and computing the excess free energy of the solid, 
Fex[ps], from equation (1 1). The resulting exact expression can be written 

- k,T j d r  j dr' Io' dA IoA dA' c(r, r ' ;  [ p ~  + A'Ap])Ap(r)Ap(r') (19) 

where the solid is reached by starting from a reference state (A = 0) of density pR(r) and 
'charging' its density gradually along the path pR(r) + AAp(r) up to the solid density 
ps(r) (A = l ) ,  i.e. Ap(r) = ps(r) - pR(r). Notice that the double charging integral in 
equation (19) can always be simplified by using the identity 

1 Io' dA IoA dil' h(A') = 1 dA (1 - A)h(A) 
0 

validforanyfunctionh(A). Choosingnowauniformliquidasreference state, pR(r) = pR, 
the first term on the RHS of equation (19) is known, Fe,[pR] = Fex,L(P~),  while the second 
can be dropped by taking pR equal to the average density of the solid, i.e. J dr Ap(r) = 
0. So, everything boils down to evaluating the DCF of a solid of density pR + AAp(r), 
with 0 6 A =s 1 and Ap(r) = ps(r) - pR. Since this is as yet not possible, this DCF was 
approximated by that of an effective liquid of density p ,  say cL(/r - r'l; 0); hence the 
name effective-liquid approximation (ELA) given to this approach. If the effective-liquid 
density pcorresponding to the solid of density ps(r) depends only on the average density 
of the solid ps, 

then the effective liquids corresponding to ps(r) and pR + AAp(r) are the same (because 
here pR = ps) and the ELA of equation (19) reduces to 

f i F e " x " * b S l  = PFex,L(PR) - 4 I dr  I dr' cL(Ir - r ' I ;  p(pR))Ap(r)Ap(r'). (20) 

Here p = p ( p )  is the density of the effective liquid corresponding to a solid of average 
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density p. Finally, to fix p(p), the effective liquid can be chosen in such a way that its 
DCF will mimic that of the solid. The choice of p(p) advocated by Baus and Colot (1985) 
is obtained when imposing the condition that the position of the main peak of the static 
structure factor of the effective liquid of density p coincides with the smallest RLV of the 
solid of average density p. This choice is motivated by the fact that: (i) the angular- 
averaged pair correlations of the solid and the liquid are similar, justifying the use of the 
ELA for the DCF in equation (19); and (ii) the strong localisation of the particles in the 
solid leads to weaker correlations in the solid than in the liquid of the same average 
density, and hence one should have p(p) < p, which is also borne out by the above 
criterion. The resulting theory is simple to implement because equation (20) is similar 
to the RY expression (cf equation (3b)), which can easily be recovered from equation 
(20) by expanding p around the coexisting liquid density. The results obtained from the 
ELA are qualitatively and quantitatively sound. The major drawback of this theory, 
however, is that it is not obvious how to extend the definition of the effective liquid to 
other non-uniform systems besides the solid. Recently a modified ELA (or MELA), which 
bypasses this difficulty, was proposed by Baus (1989). It is based on using the exact 
equation (19) with pR = 0, viz. 

and introducing now the ELA into equation (21) 

pFzELA[pS] = - dr  1 dr’ lo1 dA loA dA’ cL(/r - r’l; A’p)ps(r)ps(r’). 

One obtains finally the MELA by requiring that the effective-liquid density p of equation 
(22) be determined self-consistently from equating the excess free energy per particle 
of the solid to that of the effective liquid itself: 

1 
--FEELA[pS] = qL(p) -kBTp d r j o l  dA loA dA’ cL(Ir/; A’p) 
PSV 

which is seen to determine p in terms of ps(r) for any given cL(/r/; p). This MELA is very 
simple to implement and has, in fact, been shown to yield results that are superior to 
those of the ELA (see Lutsko and Baus 1989). As a bonus one also finds an unexpected 
relation between the MELA and the MWDA. Indeed, from equations (22) and (23) it is 
apparent that p can be written in the form of equation (17) with 

i.e. an explicit expression for the weighting function in terms of cL(/rl; p) .  If, moreover, 
we rewrite equations (21) and (22) as 

and now determine p of equation (22) not from equation (23) but from the new self- 
consistency relation 

then we recover equations (9) and (10) with w(r; p)  still given by equation (24), i.e. w = 
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~. Therefore, according to which self-consistency relation is used (equation (23) or 
(2.5)), the MELA will have the same structure as (respectively) the WDA or the MWDA, but 
with weighting functions that are no longer given by (respectively) equation (15) or (18) 
but by equation (24). These weighting functions are different because in the (M)WDA the 
‘weighted’ density is introduced into the thermodynamics of the solid and required to 
reproduce the structure of the liquid, whereas in the (M)ELA the ‘effective’ density is 
introduced into the structure of the solid and required to reproduce the thermodynamics 
of the liquid. Such a close relationship between the structure of the effective-liquid and 
the weighted-density theories, although somewhat unexpected, is of interest since these 
are also the theories that give the most reliable results. The only remaining difficulty 
now appears to be the fact that there is still no way to improue systematically on a given 
result. This problem should nevertheless be solved before one can really speak of a fully 
first-principles theory of phase coexistence. 

3. Results 

3.1. Hard-sphere freezing 

Most of the above DF theories of freezing have been tested for the hard-sphere (HS) 
fluid-solid transition. The HS transition captures the essence of the freezing transition 
by focusing attention solely on the hard-core packing aspects of it. HS freezing was first 
studied in computer simulations and later observed for colloidal HS by Pusey and Van 
Megen (1986). The pioneering simulations are due to Alder and Wainwright (1957) 
and Wood and Jacobson (1957), but the two-phase coexistence could be located with 
precision only much later (Hoover and Ree 1968). It is generally accepted now (see 
Hansen and McDonald 1976) that the coexisting densities for the fluid (F) and FCC 
(perfect crystal) solid (S) are p$ = 0.943 and pc = 1.041, with p* = pa3 for HS of dia- 
meter 0. This corresponds to a fractional density change Ap/pF = 0.104 and an entropy 
change per particle As = 1.16kB, for a melting pressure &a3 = 11.8. The Lindemann 
ratio L (RMS deviation divided by the nearest-neighbour distance) for the solid at 
coexistence is L = 0.126, while the main peak of the static structure factor of the 
coexisting fluid, max S ( k )  = 2.85, occurs at k a  = 7.15. These data are the milestones 
against which to test the DF theories. 

All DF theories of HS freezing have used the PY (Percus-Yevick) DCF except for the 
original RY theory (Ramakrishnan and Yussouff 1979) where the liquid-state data were 
taken as input from simulations or experiments. The predictions of the RY theory concern 
the fractional density change and the Fourier components of the density of the coexisting 
solid (for which the corresponding ‘experimental’ values are still unknown). The under- 
lying convergence problems discussed above in section 2 can be seen from the fact that 
Ap/p, (for HS) changes from 0.029 to 0.113 when going from the one-order-parameter 
(or density-wave) to the two-order-parameter theory. This quantity (Ap/pF)  appears to 
be very sensitive to the approximations. This is further illustrated by the fact that the 
improved second-order theory of Haymet (1983), including part of the third-order 
contributions and 1.5 order parameters, instead of improving the RY result further 
reduces it again to Ap/pF = 0.06. The strictly second-order theory of Igloi and Hafner 
(1986), using a Gaussian density profile and introducing an additional variational par- 
ameter (the density of the reference liquid used in the perturbation theory), brings this 
quantity back to its ‘experimental’ value of 0.104, but the solid disappears at higher 
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Table 1. Coexistence data for the freezing of HS into a perfect FCC crystal as obtained from 
the non-perturbative DF theories and compared to the Monte Carlo (MC) results. Here, qF 
and qs denote the packing fractions of the coexisting fluid and solid, A p / p ,  is the fractional 
density change, As the change in entropy per particle, P,,,, the pressure at coexistence and 
L = ((Ar)z)l’z/d the Lindemann ratio. All theories use the PY DCF for the solid phase and also 
for the fluid phase in the (M)ELA theory, whereas the (M)WDA results are based on the 
Carnahan-Starling equation for the fluid phase. The latter description of the fluid is better 
but the theory is less consistent since both phases are described within slightly different 
approximations. 

VF V s  APIPF A d k B  P 0 ’ P c o e x  L 

MC“ 0.494 0.545 0.103 1.16 11.7 0.126 

W D A ~ . ~  0.479 0.547 0.141 1.41 10.4 0.093 
M W D A ~  0.476 0.542 0.139 1.35 10.1 0.097 

ME LA^ 0.484 0.538 0.112 1.21 11.2 0.098 
E L A ~  0.520 0.567 0.090 1.36 16.1 0.074 

a See Hoover and Ree (1968). 
See Curtin and Ashcroft (1985). 
See Denton and Ashcroft (1989b). 
See Lutsko and Baus (1989). 

e See Baus and Colot (1985). 

densities (this is reminiscent of the remelting found by Haymet (1985)). A much more 
consistent description of the HS transition is found in the theories based on the WDA or 
the ELA. For these theories, not only the coexistence region but the full HS phase diagram 
come out to be quite reasonably accurate. A minor exception should be made though 
for Tarazona’s virial expansion of the weighting function, for which Ap/pF changes from 
0.084 (zeroth virial order; Tarazona 1984) to 0.125 (second order; Tarazona 1985), 
which may signal a slow convergence. In our opinion, the most reliable (expansion-free) 
DF theories of HS freezing are compared, in the coexistence region, in table 1. Notice 
that these theories also show no unphysical features outside the coexistence region. 

A somewhat more delicate point concerns freezing into other crystal lattices besides 
the FCC structure. This is important for those cases where the most stable lattice structure 
is not known a priori. In most DF theories the correct lattice structure is taken as input 
data, although this should in fact be sorted out by the theory itself. Very little attention 
has been paid to this problem in the DF literature (PopoviC and JariC 1988). An inter- 
esting, but rather extreme, case concerns the freezing of HS into compact lattices (FCC, 
HCP, . . .) for which both simulations (Frenkel and Ladd 1984) and DF theory (Colot and 
Baus 1985, Laird et a1 1988) have come to the conclusion that, with the present accuracy, 
it is not possible to distinguish the different compact lattices. Thus, any compact structure 
(e.g. a random compact stacking of dense lattice planes) yields a stable HS solid. In the 
simulations this is because the free-energy differences are comparable to the finite-size 
effects (Frenkel and Ladd 1984). In the theory this results from the fact that the range 
of the PY DCF is too short to probe the influence of the third-neighbour shells (Colot and 
Baus 1985), which distinguishes the compact lattices. A different problem concerns the 
BCCHS solid. Although this phase is usually thought to be unstable with respect to shear 
(not explicitly considered in the DF theories) of the pure HS system (Hoover et a1 1972), 
it could be used as a reference state for a perturbation expansion with respect to the 



2122 M Baus 

attractive forces that stabilise the shear motions. In the ELA the BCC HS solid is found to 
be metastable relative to the fluid phase (Colot and Baus 1985), whereas the MELA 
(Lutsko and Baus 1989) and the WDA (Curtin and Runge 1987) predict a BCC solid that 
is stable relative to the fluid phase and metastable relative to the FCC phase. When the 
same analysis is carried out for the sc HS solid, this phase is found to be unstable in the 
ELA (Colot and Baus 1985) but stable relative to the fluid phase in the MELA (Lutsko and 
Baus 1989). The MELA thus appears to be superior to the ELA for the description of such 
(shear-)constrained HS solids. The related attempts to improve on the PY DCF have 
revealed only minor changes (Haymet and Oxtoby 1986, Colot et a1 1986, Curtin and 
Runge 1987). 

3.2. The hard-sphere solid 

An interesting application of the DF theories of freezing concerns the theoretical study 
of the intrinsic properties of the solid phase, such as its elastic constants. In the case of 
the FCC solid where these predictions could be compared with the simulation results 
(Frenkel and Ladd 1987, Runge and Chester 1987), these studies have exhibited once 
more the superiority of the non-perturbative theories (Velasco and Tarazona 1987, Xu 
and Baus 1988) over the (RY-like) perturbation expansions (Jones 1987, JariC and 
Mohanty 1987), which did predict a negative elastic constant not seen in the simulation 
results. It should be of interest to repeat these calculations for the unconstrained BCCHS 
solid in order to probe its shear instability. All these studies concern the perfect, defect- 
free, solid. A first attempt to describe a solid with topological defects (dislocations) was 
performed by Raj Lakshmi et al (1988) within the original RY theory. A simple model 
for the HS glass was similarly studied and found to be stable within the RY theory (Singh 
et al 1985) but unstable (relative to the perfect FCC solid) in the ELA (Baus and Colot 
1986). A simple attempt to study the externally driven or forced freezing of (colloidal) 
HS systems was considered by Xu and Baus (1986) but these authors could not reproduce 
the crossover from first- to second-order freezing seen in a recent (two-dimensional) 
experiment by Chowdhury et a1 (1985). 

3.3. The crystal-melt interface 

One of the most difficult problems within the equilibrium theory of liquid-solid coexist- 
ence concerns the full-scale description of the two-phase system (including its interface). 
Interesting results have been obtained from a simplified version of the DF theory where 
one minimises the excess of the free energy over its bulk value with respect to a 
parametrised density profile that interpolates smoothly between the bulk crystal and the 
bulk liquid, the previously computed results for the (infinite) bulk system being used as 
input bulk values. A very early attempt was the one performed by Haymet and Oxtoby 
(1981) on the basis of the RY theory using just one order parameter whose spatial 
dependence was treated within the square gradient approximation. In this way they 
found a rather broad fluid-solid interface, 10-15 layers thick. Using a Gaussian profile 
for the HS solid and a ‘tanh’ interpolation for the interface region, Moore and Raveche 
(1986) found the interface to be 5-8 layers thick from the same second-order RY theory 
with a square gradient approximation in the interfacial region. Using the WDA and a two- 
parameter interpolation function for the interfacial density profile, Curtin (1987) was 
able to avoid all the expansion problems for the free energy and also the doubtful 
gradient expansion. He found the interface to be only 4-5 layers thick. Recently, 
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McMullen and Oxtoby (1988) reconsidered the earlier theory of Haymet and Oxtoby 
(1981) with a parametrised interfacial density profile and no square gradient approxi- 
mation and found the interfacial thickness to be reduced to only three layers. Both HS 
and Lennard-Jones systems have been considered, but the differences are relatively 
small. The results of Curtin (1987) appear to lead to the best agreement with the 
computer simulations of Broughton and Gilmer (1986), Cape and Woodcock (1980) and 
Tallon (1986). 

3.4. Dimensional effects 

Another hard-core system that exhibits a fluid-solid transition, although the solid has 
only quasi-long-range order, is the hard-disc model of monolayers adsorbed on smooth 
substrates. The hard-disc transition has been studied by computer simulations (Alder 
and Wainwright 1962, Hoover and Alder 1967, Wood 1968) and also within DF theory 
(Ramakrishnan and Yussouff 1979, Tarazona 1984, Colot and Baus 1986, Laird et al 
1988). The behaviour of the results is similar to that of the HS case. A problem specific 
to hard discs is that the DCF of the fluid phase, which is required as input for the DF 
theories, is not readily available. This difficulty can be overcome with the analytic 
expression for the DCF of D-dimensional HS proposed by Baus and Colot (1987). On this 
basis it was shown (Colot and Baus 1986) that the hard-rod solid (D = 1) is unstable 
while from D = 2 on the first-order character of the freezing transition increases with 
D,  the transition being pushed towards the close-packing density, which itself decreases 
with increasing D-values. It is possible, but this remains to be shown, that the situation 
would become trivial (as claimed by Wyler et a1 1987) when D tends to infinity, although 
this may be of little practical use. 

3.5. The freezing of hard-sphere mixtures 

An experimentally interesting situation concerns the freezing of mixtures. Very little 
has been done as yet in this direction, although some simulation results for HS mixtures 
may soon become available (Frenkell989). A straightforward extension of the ELA for 
the freezing of a binary HS mixture into a substitutionally disordered alloy was proposed 
by Barrat et a1 (1986). The very rich behaviour of the phase diagram (in terms of the 
diameter ratio) found there was later shown to persist also when attractive forces are 
introduced (Barrat et al1987a). The same DF theory has also been extended to a binary 
mixture of hard discs (Barrat etal1988b, Xu and Baus 1989) and to the case of the partial 
freezing of large spheres into a host fluid of small spheres (Ermak et a1 1981, Jackson et 
a1 1987) as appropriate for the study of colloidal crystals (Xu and Baus 1986). The case 
of a strongly dissimilar, but equimolar, HS binary mixture was also studied by Smithline 
and Haymet (1987) on the basis of the RY theory. 

3.6. Related studies 

Besides the hard-core systems to which our discussion has been mainly restricted, the 
DF theory of freezing has also been applied to a vast amount of other systems, such 
as the following: adhesive HS (Smithline and Haymet 1985), Lennard-Jones systems 
(Tarazona 1984, Marshall et a1 1985, Curtin and Ashcroft 1986), soft spheres (Barrat et 
al 1987c), Yukawa potentials (Kloczkowski and Samborski 1988) , polydisperse HS 
(Barrat and Hansen 1986, McRae and Haymet 1988), water (Ding et a1 1987), helium 
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(McCoy et a1 1989), liquid metals (Ingloi et a1 1987), dipolar HS (McMullen and Oxtoby 
1987, Smithline et a1 1988), charged HS (Wu and Baus 1987, Brami et a1 1988), molten 
salts (Rovere et a1 1982, Barrat 1987a), one-component plasma (Haymet 1984, Rovere 
and Tosi 1985, Barrat 1987b, Iyetomi and Ichimaru 1988), ionic mixtures (Ichimaru et 
a1 1988, Barrat et a1 1988a), etc, not to mention recent related studies of orientational 
freezing (see e.g. Colot et a1 1988) and of fluid interfaces and wetting phenomena (see 
e.g. Evans 1989). 

4. Conclusions 

The density-functional approach to equilibrium statistical mechanics of non-uniform 
systems has been widely recognised as an efficient framework for the theoretical study 
of a large variety of problems involving spatial non-uniformities. In the extreme case of 
liquid-solid coexistence it has already become a popular means to produce phase 
diagrams for a large variety of systems. In this review we have discussed the different 
methods by which such freezing data are usually produced. We have come to the 
conclusion, which may be subjective, that all theories based on the truncation of infinite 
series are subject to caution and that the nature of the convergence (if present) of the 
expansions they generate is not understood. Those theories which are non-perturbative 
appear instead to be quite reliable and also physically comparable. The latter theories 
are, however, still far from yielding a complete first-principles theory of first-order 
phase transitions such as freezing because some of the fundamental problems (such as 
symmetry breaking) remain unanswered by them whereas there also appears to be no 
systematic way to improve their predictions. Apart from these limitations, the progress 
realised during the past decade is considerable. To illustrate these points we have 
considered a number of explicit results. Because of the already fairly large literature on 
the subject we have limited ourselves here to the hard-core (mainly hard-sphere) 
systems. It was shown then that, with the help of computer simulations and present-day 
liquid-state theory, fairly accurate solid-state and freezing data can be obtained from 
the DF theories by, after all, fairly simple means. Future research in this area should 
concentrate now on the freezing of those systems for which the equilibrium state is not 
a compact lattice structure (e.g. the one component plasma and some of the soft-sphere 
systems). 
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